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Abstract

Introduction: For many exposures present across the life course, the effect of the expo-

sure may vary over time. Multivariable Mendelian randomization (MVMR) is an approach

that can assess the effects of related risk factors using genetic variants as instrumental

variables. Recently, MVMR has been used to estimate the effects of an exposure during

distinct time periods.

Methods: We investigated the behaviour of estimates from MVMR in a simulation study

for different time-varying causal scenarios. We also performed an applied analysis to

consider how MVMR estimates of body mass index on systolic blood pressure vary

depending on the time periods considered.

Results: Estimates from MVMR in the simulation study were close to the true values

when the outcome model was correctly specified: i.e. when the outcome was a discrete

function of the exposure at the precise time points at which the exposure was measured.

However, in more realistic cases, MVMR estimates were misleading. For example, in one

scenario, MVMR estimates for early life were clearly negative despite the true causal ef-

fect being constant and positive. In the applied example, estimates were highly variable

depending on the time period in which genetic associations with the exposure were esti-

mated.

Conclusions: The poor performance of MVMR to study time-varying causal effects can

be attributed to model misspecification and violation of the exclusion restriction assump-

tion. We would urge caution about quantitative conclusions from such analyses and

even qualitative interpretations about the direction, or presence or absence, of a causal

effect during a given time period.

Key words: Instrumental variables, causal inference, life-course epidemiology, misspecification, exclusion
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Introduction

Multivariable Mendelian randomization (MVMR) is an

extension of standard (univariable) Mendelian randomiza-

tion to investigate the causal effects of related risk factors

with shared genetic predictors.1 In standard Mendelian

randomization, we take genetic variants that are predictors

of a single risk factor, and assess whether genetically pre-

dicted levels of the risk factor are associated with the out-

come.2 If the genetic variants satisfy the instrumental

variable assumptions, then an association between geneti-

cally predicted levels of the risk factor and the outcome is

indicative of a causal effect of the risk factor on the out-

come.3 MVMR is analogous, except that instead of testing

whether genetically predicted values of a single risk factor

are associated with the outcome, we test whether geneti-

cally predicted values of multiple risk factors are associated

with the outcome or not in a multivariable model.4

Estimates from MVMR represent direct effects of the risk

factors on the outcome.5 The method is primarily used in

two contexts: first, to assess the effect of an exposure when

genetic variants associated with the exposure may have

pleiotropic effects on the outcome via other measured risk

factors;1 and second, to assess the relative contribution of

causal pathways from the exposure to the outcome via

other measured risk factors in a mediation analysis.5,6

We investigate a related application of MVMR that has

been considered in empirical investigations7,8 and has re-

cently been described from a methodological perspec-

tive9,10 that we refer to as time-varying Mendelian

randomization. In this setting, the risk factors are not sepa-

rate exposures, but rather multiple measures of the same

exposure at different time points (Figure 1). For instance,

Richardson et al. considered body mass index (BMI) mea-

sured during early life and during later life as separate risk

factors, and assessed whether genetically predicted values

of early-life and later-life BMI were associated with coro-

nary artery disease (CAD) risk.7 The authors interpreted a

positive univariable association between genetically pre-

dicted early-life BMI and CAD risk as evidence that early-

life BMI is a causal risk factor for CAD, and lack of an in-

dependent association between genetically predicted early-

life BMI and CAD risk in a multivariable model that also

included genetically predicted later-life BMI as evidence

that early-life BMI does not have a direct effect on CAD

risk, but that the risk is mediated via later-life BMI.

These analyses pose several difficulties. First, it is neces-

sary to have some linear independence between genetic

predictors of the exposure at different time points.11 If ge-

netic associations with the exposure at different time

points are perfectly proportional, then it is not possible to

disentangle the effects of the exposure at different time

points. It is not necessary to find distinct genetic predictors

of the exposure at different time points, but if correlations

across variants between the genetic associations with the

exposure at different time points are strong, then the analy-

sis will have limited utility.

However, even when such genetic variants are avail-

able, the use of MVMR to investigate time-varying causal

effects necessitates strong parametric assumptions that are

unlikely to be plausible in practice. In univariable

Mendelian randomization, in order to estimate a parame-

ter that represents a causal effect, it is necessary to make

parametric assumptions.12 There are different parametric

assumptions, depending on which causal effect to be iden-

tified or interpreted. For example, for the average treat-

ment effect (ATE), one normally requires the homogeneity

and the linearity of exposure–outcome model.13 Similarly,

monotonicity is usually required for the local average treat-

ment effect (LATE). However, even if these assumptions

are not satisfied, the standard Mendelian randomization

Key Messages

• Multivariable Mendelian randomization (MVMR) is a popular analysis approach that has recently been applied to

analyse the effect of a single exposure during different time periods, in order to understand the time-varying effect of

the exposure.

• Our simulation study showed that estimates from MVMR can be misleading when the model relating the exposure to

the outcome is misspecified.

• Misspecification is likely to be common in practice, as it is implausible that the outcome is a discrete function of the

values of the exposure during the specific time periods when the exposure was measured.

• MVMR estimates can be unreliable as a guide to either the direction, or even the existence, of a causal effect of the

exposure during a particular time period.

• These cautions are particularly relevant to the case that the risk factors in the analysis are not distinct exposures, but

measurements of the same exposure at different time points.
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estimate is a valid test statistic for the sharp causal null hy-

pothesis that the exposure has no causal effect on the out-

come at any time point.14 Rejection of this null hypothesis

implies that the exposure has a causal effect on the out-

come at some time point in at least a subset of the popula-

tion. Here, we will show by counterexample that an

analogous result for time-varying Mendelian randomiza-

tion does not hold.

In this paper, we will explore the behaviour of estimates

from MVMR for a time-varying exposure in a simple simu-

lation study. We shall show that, when the model for the

outcome is correctly specified, estimates from MVMR are

close to the true parameter values. However, when the

model is incorrectly specified (as is likely in practice), esti-

mates are highly misleading. We also perform an applied

MVMR analysis of BMI on systolic blood pressure (SBP)

and show that estimates and inferences are highly variable

depending on the time period at which genetic associations

with BMI are estimated.

Methods

MVMR has been described at length in the literature1,4 and

in particular in the context of time-varying causal effects.9,10

We here provide a brief overview of the approach.

Assumptions and estimation

We use the term ‘exposure’ to describe the putative causal

factor and the term ‘risk factor’ to describe the value of the

exposure at a particular time point. MVMR requires each

genetic variant to satisfy the multivariable instrumental

variable assumptions15:

i. the variant is associated with one or more of the risk

factors,

ii. the variant is not associated with the outcome via a

confounding pathway and

iii. the variant does not affect the outcome directly, only

possibly indirectly via one or more of the risk factors.

In order to estimate causal effects, we need to make addi-

tional assumptions. For simplicity, we assume that all varia-

bles are continuous, and the associations between the

genetic variants and the risk factors, the genetic variants and

the outcome, and the causal effect of the risk factors on the

outcome are homogeneous and linear without effect modifi-

cation by any confounder.3 This enables the estimation of

the direct effects of the risk factors on the outcome using the

two-stage least squares (2SLS) method, which can be imple-

mented by first regressing the risk factors on the genetic var-

iants, and then regressing the outcome on the fitted values

of the risk factors in a multivariable model.16

The term ‘direct effect’ is imprecise; it has previously

been argued that the direct effects estimated in instrumental

variable analyses are most naturally interpreted as con-

trolled direct effects (i.e. the effect of varying the exposure

while fixing the mediator at a given value), as the instrumen-

tal variables set the values of the risk factors.6 However, in

the all-linear setting, natural and controlled direct effects

take the same value, so any difference is a question of inter-

pretation. An alternative estimation method that could be

applied here is g-estimation of structural mean models, al-

though estimates are similar to those from 2SLS in the all-

linear setting.10 Equivalent estimates to those from 2SLS

would also be obtained from the multivariable inverse-

variance weighted method if we had access to summarized

data on the genetic associations with the outcome and with

the exposure at the relevant time points.17

Simulation studies

We investigate the behaviour of MVMR estimates for a

time-varying exposure in a series of simulation studies. We

simulate the time-varying exposure X(t) according to the

following data-generating model:

XðtÞ ¼
X30

j¼1

ajðtÞGj þ cosðtÞU þ sinðtÞ�X (1)

where the genetic variants Gj for j ¼ 1; 2; . . . ;30 follow in-

dependent binomial distributions Bð2; 0:3Þ, and the con-

founder U and the error term �X have independent

standard normal distributions. The exposure varies over

Figure 1 Directed acyclic graph illustrating multivariable Mendelian ran-

domization assumptions for two risk factors (X1 and X2), J genetic var-

iants (G1;G2; . . . ;GJ ) that are assumed to satisfy the multivariable

instrumental variable assumptions, an outcome (Y) and an unmeasured

confounder (U). In time-varying Mendelian randomization, we assume

that the two risk factors are measurements of the same exposure at dif-

ferent time points. The dashed arrow from X1 to X2 indicates the poten-

tial causal effect of the exposure at time point 1 on the exposure at time

point 2
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time t, which can be interpreted as an individual’s age, ow-

ing to sinusoidal effects of the error term [sinðtÞ], the con-

founder [cosðtÞ] and the genetic variants:

ajðtÞ ¼ A1;j þ A2;j cosðA3;jt � A4;jÞ (2)

where A1;j; A2;j; A3;j and A4;j all have independent normal

distributions for each variant j. We use the cosine function

to generate variability in the genetic effects and thus avoid

weak instruments bias caused by the high linear depen-

dence between genetic predictors of the exposure at differ-

ent time points. The distributions of fA1;j;A2;j;A3;j;A4;jg
are fixed for each scenario, but vary between scenarios.

Detailed values for the independent normal distribution

are shown in Supplementary Table S1 (available as

Supplementary data at IJE online).

We consider two scenarios for the outcome. First, we

assume that the outcome is a function of the exposure at

two fixed time points, t¼ 10 and t¼ 50:

Y ¼ 0:4Xð10Þ � 0:8Xð50Þ þU þ �Y (3)

where U is the confounder as above and �Y has an indepen-

dent standard normal distribution. The true causal effect

of the exposure at time 10 is þ0.4 and the causal effect of

the exposure at time 50 is –0.8. We consider estimates

from MVMR in four cases: first, when the exposure is mea-

sured at times 10 and 50 (Scenario 1A); then when the ex-

posure is measured at times 10, 40 and 50 (Scenario 1B);

at times 15 and 30 (Scenario 1C); and at times 15 and 50

(Scenario 1D). We recognize that this outcome model is

somewhat unrealistic; we explore these scenarios to inves-

tigate whether methods can consistently estimate causal

effects when the model is correctly specified.

Second, and more realistically, we assume that the out-

come is a continuous function of the exposure that varies

over time. We express the relationship between the

exposure and outcome using an integral, where the causal

effect of the exposure depends on the time-varying func-

tion bðtÞ:

Y ¼
ð50

0

bðtÞXðtÞdt þU þ �Y (4)

where again the confounder U and �Y have independent

standard normal distributions. We consider three different

scenarios for bðtÞ:

bðtÞ ¼ 0 for t 2 ½0; 40�
1 for t 2 ½40; 50� ðScenario 2AÞ

�
(5a)

bðtÞ ¼ 0:5 for t 2 ½0;20�
0 for t 2 ½20; 50� ðScenario 2BÞ

�
(5b)

bðtÞ ¼ 0:1 for t 2 ½0;50� ðScenario 2CÞ: (5c)

In Scenario 2A, the causal effect of the exposure is null in

early life (up to time 40) and positive in later life. In Scenario

2B, the causal effect of the exposure is positive in early life

(up to time 20) and null in later life. In Scenario 2C, the causal

effect of the exposure is constant and positive across the life

course. The model parameters are illustrated in Figure 2. We

consider MVMR estimates when the risk factors are the expo-

sure measured at times 10 and 50. In Scenario 2C, we also

consider a wider range of choices of timings for the exposure

measurements and consider the impact on estimates.

Interpreting multivariable estimates as causal

effects

In order to better interpret parameters estimated in time-

varying MVMR, we consider a simplified scenario in

which the genetic effects on the exposure vary linearly over

time. Suppose we have two measured time points t1 and t2

−0.8
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Figure 2 The model parameters for each scenario in the simulation. For continuous effects, the outcome is a continuous function of the exposure that

varies over time (0, 50). For the discrete effect, the outcome is a function of the exposure at the two fixed time points (10 and 50)
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satisfying 0 � t1 < t2 � 50, and consider estimates at

the measured time points b̂1 and b̂2 for an outcome Y de-

fined by Equation (4). The total cumulative effectÐ 50
0 bðtÞdt represents the impact of a lifelong increase in the

exposure by one unit. These estimates have the asymptotic

values (see Supplementary Text S1 and S2, available as

Supplementary data at IJE online):

plim
n!1

b̂1 ¼
ð50

0

bðtÞ t2 � t

t2 � t1
dt and

plim
n!1

b̂2 ¼
ð50

0

bðtÞ t � t1

t2 � t1
dt

(6)

which represent weighted cumulative effects across the

whole life course. Hence the estimates do not represent an

effect limited to a particular time period: the estimate at t1

more strongly represents the effect of the exposure during

early life and the estimate at t2 more strongly represents

the effect during later life, but both estimates are influ-

enced by the effect of the exposure across the whole life

course. Hence, if there is a sustained effect of the exposure

during early life, the estimate at t2 will be non-zero even if

the effect during later life is null.

If t1 ¼ 0 and t2 ¼ 50, then the weighting functions t2�t
t2�t1

and t�t1

t2�t1
take values between 0 and 1, and the estimates at

t1 and t2 will be non-negative if the effect function bðtÞ is

non-negative. However, if t1 ¼ 10, then the weighting

function t�t1

t2�t1
will take negative values for t< 10. Similarly,

if t2 ¼ 40, then the weighting function t2�t
t2�t1

will take nega-

tive values for t> 40. Hence, even if the bðtÞ is non-

negative (or even strictly positive) across the whole life

course, MVMR estimates can be negative. For instance, if

t1 ¼ 10 and t2 ¼ 50, then the asymptotic estimate at t2

would be negative if bðtÞ is large and positive for t< 10,

and zero (or alternatively small and positive) for t � 10.

We note that the sum of the asymptotic estimates from

MVMR is the total cumulative effect. This result holds

more generally provided the genetic effects on the exposure

are not too irregular (see Supplementary Text S3, available

as Supplementary data at IJE online for precise conditions).

We also consider simulated scenarios for a data-

generating model in which the genetic effects are linear and

the confounder is allowed to vary in time:

XðtÞ ¼
X30

j¼1

ajðtÞGj þU0 þUðtÞ þ �XðtÞ t 2 ½0;50� (7)

Y ¼
ð50

0

bðtÞXðtÞdt þU0 þUð50Þ þ �Yð50Þ (8)

where UðtÞ; �XðtÞ; �YðtÞ are independent Brownian motions

with variance equal to 1 at t¼ 50, U0 � Nð0;12Þ and the

instrumental effects on the exposure are:

ajðtÞ ¼ aj þ bjt (9)

where fajg and fbjg are independently simulated from the

uniform distribution Uð�0:1;0:1Þ and Uð�0:04;0:04Þ, re-

spectively. The trajectory for the exposure of one individ-

ual, along with the instrument and confounding effects, is

shown in Supplementary Figure S1 (available as

Supplementary data at IJE online). We consider the true

underlying effect bðtÞ of Scenario 2A (null effect until time

40 and positive effect thereafter) and run the MVMR

analysis with four sets of time points; they are 10, 50, 20,

50, 40, 50 and 20, 40, denoted by Scenario 3A, 3B, 3C and

3D. For each case, we also calculate the expected MVMR

estimates according to Equation (6). Finally, to investigate

the sensitivity of our findings to the choice of genetic model,

we conduct a further simulation in a scenario in which the

effects of genetic variants on the exposure switch from off

to on at different times (see Supplementary Text S4, avail-

able as Supplementary data at IJE online, for full details).

Illustrative example: BMI and SBP

To investigate how estimates may behave in a real data

analysis, we performed a time-varying MVMR analysis in

which the exposure is BMI and the outcome is SBP.

Previous Mendelian randomization analyses have sug-

gested that BMI has a positive causal effect on SBP,18 al-

though how this effect may vary over time has not been

explored. We took data from UK Biobank, a prospective

cohort study of around half a million people aged 40–

69 years at baseline, recruited in 2006–2010 from across

the UK.19 We considered 366 089 unrelated individuals of

European ancestries, who passed various quality-control

filters as described previously.20 We used 93 uncorrelated

(pairwise r2 < 0:01) single-nucleotide polymorphisms as

instrumental variables that have previously been shown to

be associated with BMI at a genome-wide level of statisti-

cal significance.21 This genome-wide association study did

not include UK Biobank participants, thus avoiding bias

due to winner’s curse.22

We derived MVMR estimates using a two-sample 2SLS

method, as we only have measurements of BMI for each in-

dividual at a single time point. In the first stage, we per-

formed two separate regressions of BMI on the genetic

variants using individuals recruited between ages 41–46

and 60–65 years. We used coefficients from these regres-

sions to estimate genetically predicted BMI at ages 41–46

and 60–65 years for individuals aged >65 years at recruit-

ment. We then performed the second-stage regression of
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SBP on genetically predicted BMI using individuals aged

>65 years at recruitment. To investigate variability of

results to the choice of time period, we repeated this analy-

sis using different age ranges for the first BMI regression:

42–47, 43–48, 44–49 and so on up to 55–60 years. The

second time period was always taken as 60–65 years, and

the second-stage regression was always conducted in indi-

viduals aged >65 years at recruitment. Estimates represent

the change in SBP in mmHg per 1-kg/m2 increase in geneti-

cally predicted BMI. The diagram demonstrating the fitting

procedure is shown in Supplementary Figure S2 (available

as Supplementary data at IJE online).

Results

Simulation study

For each scenario, we generated 1000 data sets on 10 000

participants. The average proportion of variance in the expo-

sure explained by the genetic variants under each scenario is

�10%, corresponding to a univariable F-statistic of 36.9.

The average conditional F-statistic values for MVMR in most

scenarios are >10, a value conventionally regarded as a guide

to diagnose weak instruments.4,11 Detailed values for instru-

ment strength values are shown in Supplementary Table S2

(available as Supplementary data at IJE online). We present

results from MVMR obtained using the 2SLS method.

Discrete effects of the exposure at specific time

points

Results from the simulation study in which the outcome is

a function of the exposure at times 10 and 50 are shown in

Figure 3. In Scenario 1A, we use the exposure measured at

times 10 and 50 as risk factors. Median estimates across

scenarios are close to the true causal effects: namely þ0.4

at time 10 and –0.8 at time 50, though there is some bias

towards the null due to weak instruments. In Scenario 1B,

we use the exposure measured at times 10, 40 and 50 as

risk factors. Again, median estimates across scenarios are

close to the true causal effects, with the median estimate at

time 40 around zero. However, in Scenario 1C (using the

exposure at times 15 and 30) and in Scenario 1D (using the

exposure at times 15 and 50), median estimates are sub-

stantially different to the true values. In Scenario 1C, the

median estimate at time 15 is negative and at time 30 is

positive; this is the opposite to the true situation, as the

true effect is positive at the earlier time point and negative

at the later time point. In Scenario 1D, the median estimate

–0.8 –0.5

Figure 3 Simulation results when the outcome is affected discretely by the exposure at specific time points. Box plots of multivariable Mendelian ran-

domization (MVMR) estimates with risk factors taken as the exposure measure at different measured time points—Scenario 1A: times 10 and 50;

Scenario 1B: 10, 40, 50; Scenario 1C: 15, 30; Scenario 1D: 15, 50. Box indicates lower quartile, median and upper quartile; error bars represent the min-

imal and maximal data point falling in the 1.5 interquartile range distance from the lower/upper quartile; estimates outside this range are plotted sep-

arately. The true effects are b1 ¼ 0:4 at time 10 and b2 ¼ �0:8 at time 50 (black dashed lines)
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at time 50 is correctly negative, but the median estimate at

time 15 is also negative, whereas the early-age causal effect

is positive. We repeated the simulation study with stronger

instruments (average proportion of variance in the expo-

sure explained was around 30%); results shown in

Supplementary Figure S3 (available as Supplementary data

at IJE online) support our claim that bias in Scenarios 1A

and 1B is due to weak instruments.

Continuous effects of the exposure across time

Results from the simulation study in which the outcome is

a continuous function of the exposure are shown in

Figure 4. In Scenario 2A, median estimates at both time

points are positive despite the true effect being null in early

life and positive in later life only. In Scenario 2B, the me-

dian estimate at the earlier time point is close to zero and

the median estimate at the later time point is positive,

whereas in truth the causal effect of the exposure is posi-

tive in early life and null in later life. In Scenario 2C, the

median estimate at the earlier time point is negative and

the median estimate at the later time point is positive, de-

spite the true causal effect of the exposure being constant

and positive throughout.

Figure 5 provides results from Scenario 2C (constant

positive effect) for a range of different choices of time

points, indicated as Option 1, Option 2 and so on. We also

vary the number of time points considered. Median esti-

mates varied substantially depending on the choice of time

points, with no evident pattern of results. Although median

estimates were mostly positive, they were sometimes close

to zero and occasionally clearly negative. Moreover, it is

not clear that estimates improved when considering meas-

ures of the exposure at increased numbers of time points,

as some median estimates were either close to zero or nega-

tive even when the exposure was measured at four time

points.

Linear time-varying genetic effects

Results from the simulation study in which the outcome is

a continuous function of the exposure and the genetic

effects on the exposure vary linearly with time are shown

in Figure 6. In Scenarios 3A and 3B, the median estimates

for the first measured time point are positive, whereas in

truth the causal effect of the exposure is null at these time

points. When the second time point is changed to 40, as in

Scenario 3D, the median estimates for the first measured

Figure 4 Simulation results when the outcome is affected continuously by the exposure across time. Box plots of multivariable Mendelian randomiza-

tion (MVMR) estimates with risk factors taken as the exposure measure at different measured time points: Scenario 2A: null effect until time 40, posi-

tive effect thereafter; Scenario 2B: positive effect until time 20, null effect thereafter; Scenario 2C: constant positive effect. Box indicates lower

quartile, median and upper quartile; error bars represent the minimal and maximal data point falling in the 1.5 interquartile range distance from the

lower/upper quartile; estimates outside this range are plotted separately
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time point are negative, despite the true causal effect func-

tion being non-negative at all time points. In all scenarios,

the median estimates are close to the expected values given

in Equation (6). This indicates that the problem in time-

varying MVMR is not bias, but rather that the quantities

estimated do not have a meaningful interpretation as the

causal effect of an exposure restricted to a particular time

period.

Finally, results from the simulation in which the effects

of genetic variants on the exposure switch from off to on

at different times are presented in Supplementary Figures

S5 and S6 (available as Supplementary data at IJE online).

Results are very similar to those in Figure 6, indicating that

findings are not sensitive to the choice of model relating

the genetic variants to the exposure.

Illustrative example: BMI and SBP

Results from the illustrative example for the effect of BMI

on SBP are shown in Figure 7. Conditional F-statistics

were close to 1 in all cases, indicating little variability in

the genetic effect over time (Supplementary Table S3,

available as Supplementary data at IJE online). This means

that there is little information in the data to obtain precise

multivariable estimates at the different time points. Scatter

plots of the genetic associations with BMI at different time

periods are shown in Supplementary Figure S4 (available

as Supplementary data at IJE online); whereas most var-

iants are similarly associated with BMI across time periods,

some variants are more strongly associated during the ear-

lier or later time period, enabling the MVMR analysis to

be performed. MVMR estimates for both time periods are

highly variable about the age range over which the risk fac-

tor associations were estimated. The range of variation in

Mendelian randomization estimates was greater than

expected based on the standard errors of estimates. In

some cases, the 95% CI for the estimate in the first time pe-

riod was negative and excluded the null and the 95% CI

for the estimate in the second time period was positive and

excluded the null. But there were also positive point esti-

mates for the first time period and negative point estimates

for the second time period. In summary, both estimates

Figure 5 Simulation results when the outcome is affected continuously by the exposure across time in Scenario 2C (constant positive effect). Box

plots of multivariable Mendelian randomization (MVMR) estimates with risk factors taken as the exposure measure at different measured time points

when varying the location and number of time points. Box indicates lower quartile, median and upper quartile; error bars represent the minimal and

maximal data point falling in the 1.5 interquartile range distance from the lower/upper quartile; estimates outside this range are plotted separately.
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Figure 6 Simulation results when the outcome is affected continuously by the exposure across time and the genetic effects on the exposure vary line-

arly in time. Box plots of multivariable Mendelian randomization (MVMR) estimates with risk factors taken as the exposure measure at different mea-

sured time points: 10, 50, 20, 50, 40, 50 and 20, 40, denoted by Scenario 3A, 3B, 3C and 3D. The underlying continuous effect is as in Scenario 2A: null

effect until time 40, positive effect thereafter. The red points represent the expected estimate according to Equation (6). Box indicates lower quartile,

median and upper quartile; error bars represent the minimal and maximal data point falling in the 1.5 interquartile range distance from the lower/up-

per quartile; estimates outside this range are plotted separately
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Figure 7 Multivariable Mendelian randomization estimates (95% CIs) of the effect of body mass index (BMI) on systolic blood pressure for different

time periods. The first risk factor is BMI over the first time period as indicated. The second risk factor is BMI over the time period from age 60 to 65

years. Estimates for systolic blood pressure are performed in individuals aged >65 years at the time of recruitment
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and inferences based on those estimates were strongly de-

pendent on the choice of the first time period—a choice

that is likely to be arbitrary in practice.

Discussion

As the well-known aphorism goes: all models are incorrect,

but some models are useful.23 In univariable Mendelian

randomization, strict parametric assumptions are required

for Mendelian randomization estimates to be interpreted

as either an ATE or a LATE.12 However, even if these

assumptions are not satisfied, the univariable Mendelian

randomization estimate still has an interpretation as a test

statistic for a relevant causal hypothesis.24 Indeed, it is

been argued that the numerical value of a Mendelian ran-

domization estimate rarely represents the estimate of a

policy-relevant parameter,25 as (amongst other reasons) it

represents the impact of a lifelong change in the distribu-

tion of the exposure, whereas interventions on exposures

in clinical practice are more limited in time.26,27 Hence the

primary value of a Mendelian randomization investigation

is to provide evidence supporting (or questioning) a causal

hypothesis, rather than providing a causal estimate.28

However, estimates from MVMR for a time-varying ex-

posure do not seem to have a similar interpretation as a

test statistic for a relevant causal hypothesis relating to the

presence of a causal effect over a specific time period.

When the exposure affects the outcome at a limited num-

ber of discrete time points and the risk factors in the

MVMR analysis are the values of the exposure at these

time points, causal effects at these time points can be

unbiasedly estimated. But if these time points are not cor-

rectly identified, estimates obtained by the ill-specified

model are incorrect in a way that is misleading to any

inferences being drawn from their magnitude, about either

the presence or the direction of a causal effect. Similarly, if

the effect of the exposure on the outcome is not discrete,

but rather continuous, then the values estimated by

MVMR do not have a naturally intuitive interpretation.

For the MVMR model to be correctly specified, the model

in Figure 1 must represent the true data-generating model,

and not merely be a simplification of the model. It is im-

plausible for the true effect of an exposure on the outcome

to be discrete at the precise time points at which measure-

ments of the exposure are available; hence, we expect po-

tentially misleading estimates to be ubiquitous for time-

varying Mendelian randomization investigations in

practice.

We have provided a simulated example in which the ef-

fect of the exposure on the outcome is positive in early life

only and negative in later life, but estimates from MVMR

would suggest the opposite. We have also provided a

simulated example in which the effect of the exposure on

the outcome occurs in early life only and not in later life,

but estimates from MVMR would suggest the opposite.

Similarly, we have provided a simulated example in which

the effect of the exposure on the outcome occurs in later

life only and not in early life, but estimates from MVMR

analysis are positive throughout. We have provided a simu-

lated example in which estimates from MVMR at different

time points are not necessarily positive even though the ef-

fect of the exposure is uniformly constant and positive.

Finally, we have considered a simple case in which the ge-

netic effects on the exposure vary linearly, and have shown

algebraically that values estimated by MVMR do not rep-

resent intuitively interpretable causal effects. We have also

provided an applied example with real data, and shown

that estimates are sensitive about the time period over

which genetic associations with the exposure were esti-

mated. The choice of time period influenced the conclu-

sions drawn from the analysis: whether there is a negative

effect of BMI on SBP during the first time period or not,

and whether there is a positive effect of BMI on SBP during

the second time period or not.

The poor performance of MVMR in these examples can

be attributed to model misspecification. In general, when a

statistical model is misspecified, estimates suffer from bias

that is unpredictable in both magnitude and direction.29

The estimates of MVMR represent weighted cumulative

effects, whereas the weighting function is affected by the

measured time points and the time-varying instrumental

effects, which makes results sensitive to the time points

chosen and unpredictable as the time-varying instrument

effects are unknown. Another explanation is violation of

the exclusion restriction assumption. The instrumental var-

iable assumptions state that the totality of the effect of the

genetic variants on the outcome is mediated via the expo-

sure, such that if the exposure were fixed and the genetic

variants varied, the outcome would remain the same.30 If

the effect of the exposure acts continuously over time, it

would not be sufficient to fix its value at a few specific

time points, but it would be necessary to fix the trajectory

of the exposure over time. Similarly, complete mediation

of the genetic effect on the outcome via the exposure

would only be observed when considering the distribution

of the exposure over time. As time is continuous rather

than discrete, it is unlikely that any model containing val-

ues of the exposure at specific discrete time points could be

correctly specified. One potential extension of this work is

to consider models that fit the outcome as a continuous

function of the exposure, which requires the exposure or

the instrument effects over the whole life course to be

modelled.
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One qualitative limitation of our cautionary remarks is

that we have considered scenarios in which the risk factors

represent the same exposure measured at different time

points. In the example of Richardson et al.,7 it is arguable

that early-life BMI and later-life BMI represent biologically

distinct exposures, whose effect on the outcome is re-

stricted to a limited time period. For example, early-life

BMI may only affect the outcome for the growth and de-

velopment period until full adult size is achieved. Hence

MVMR could be a legitimate tool for obtaining meaning-

ful inferences in this case, and the estimates represent the

effect of the corresponding distinct exposure during the

time period. Whereas we agree that such a situation is

more amenable to the use of MVMR, we would still be

cautious about over-interpretation of results from time-

varying Mendelian randomization investigations, and

would recommend that investigators assess the robustness

of findings carefully (e.g. by assessing the consistency of

results with different choices of genetic variants and/or dif-

ferent time points for the measurement of the exposure).

Another limitation is that the simulation scenarios consid-

ered may be unrealistic, although similar fragility in esti-

mates was observed in the applied analysis. A further

practical issue, as observed in the applied example, is that

it is difficult to find genetic variants for which the effect on

the exposure is more or less strong at different time peri-

ods, and hence estimates from MVMR may be highly vari-

able and imprecise.

In conclusion, MVMR analyses to investigate time-

varying causal effects rely on parametric assumptions that

are unlikely to be satisfied in practice, and provide esti-

mates that can be misleading if the model is incorrect. We

therefore strongly discourage quantitative conclusions to

be drawn from these analyses, and would advise caution

about the qualitative interpretation of such findings as a

guide of the direction or even existence of a causal effect

during a particular phase of life.
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